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Abstract. The Berezinskii–Kosterlitz–Thouless (BKT) transition, the transition of the two-
dimensional sine-Gordon model, plays an important role in low-dimensional physics. We relate
the operator content of the BKT transition to that of theSU(2) Wess–Zumino–Witten model,
using twisted boundary conditions. With this method, in orderk − 1 to determine the BKT
critical point, we can use the level crossing of the lower excitations instead of those for the
periodic boundary case, thus the convergence to the transition point is highly improved. We
verify the efficiency of this method by applying it to theS = 1, 2 spin chains.

1. Introduction

The Berezinskii–Kosterlitz–Thouless (BKT) transition [1–3] plays an important role in 2D
classical and one-dimensional (1D) quantum systems, such as the 2DXY spin model,
2D helium film, 2D superconducting film, roughening transition, 1D quantum spin models
and 1D electron systems. Furthermore, the BKT transition is a typical instability of the
Tomonaga–Luttinger liquid, such as the Mott transition in 1D metal [4].

It was a difficult problem to determine numerically the critical point and the universality
class of the BKT transition, because of logarithmic corrections and the slow divergence of
the inverse correlation length (or the energy gap) [5]. Moreover, it is hard to distinguish
the BKT transition from the second-order transition, by using the conventional finite-size-
scaling method [6, 7]. In fact, for the exactly solvableS = 1

2 XXZ spin chain, where
the transition at1 = 1 is of the BKT type, the finite-size scaling method leads to false
conclusions [8]. This problem was successfully resolved by the level spectroscopy [9],
based on the renormalization group calculation and theSU(2)/Z2 symmetry in the BKT
transition.

The SU(2) symmetry inherent in the BKT transition was pointed out by Halpern [10]
and Bankset al [11]. They showed the equivalence between theSU(2) massless Thirring
model and the theory of the bosons consisting of a free field plus aβ2 = 8π sine-Gordon
model, which corresponds to the BKT line. Another approach was proposed by Ginsparg
[12], based on thec = 1 conformal field theory: modding out theSU(2) symmetry model
by Z2 symmetry gives the structure of the BKT multicritical point.

In this paper we directly relate theSU(2)/Z2 structure of the operator content of the
BKT transition to that of thek = 1 SU(2) Wess–Zumino–Witten (WZW) model, using
twisted boundary conditions (TBC). With this method, in order to determine the BKT
critical point, we can use the level crossing of the lower excitations than those under the
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periodic boundary conditions (PBC), thus the convergence to the transition point is highly
improved. We then apply the method to theS = 1, 2 spin chains.

2. BKT transition and twisted boundary condition

2.1. On the Gaussian line

We consider the 2D Gaussian model defined as the Lagrangian

L0 = 1

2πK
(∇φ)2. (1)

We compactifyφ on a circle asφ ≡ φ+2π/
√

2. We introduce the dual fieldθ to φ defined
as

∂xφ = −∂y(iKθ) ∂yφ = ∂x(iKθ) (2)

which has the periodic natureθ ≡ θ + 2π/
√

2.
The vertex operator defined as

Om,n =: exp(im
√

2φ) exp(in
√

2θ) (3)

has a scaling dimensionxm,n and a conformal spinsm,n

xm,n(K) = 1

2

(
m2K + n

2

K

)
sm,n = mn. (4)

There are other types of fields, i.e. the current fields

2i√
K
∂φ

2i√
K
∂̄φ (5)

which havex = 1, s = ±1, and the marginal field

M = − 4

K
∂φ∂̄φ = − 1

K

(
(∂xφ)

2+ (∂yφ)2
)

(6)

which hasx = 2, s = 0. There also exist descendant fields of them.
About the symmetry, the Gaussian model (1) is invariant underφ→ φ+constant, θ →

θ + constant, which means theU(1) × U(1) continuous symmetry. There are also the
discreteZ2 symmetries,T : (z, φ, θ) → (z,−φ,−θ) andC : (z, φ, θ) → (z̄, φ,−θ) (we
can also define the redundant symmetryP = CT : (z, φ, θ)→ (z̄,−φ, θ)). The Gaussian
model is invariant under the dual transformationK ↔ 1/K, φ ↔ θ . The self-dual point
K = 1 is nothing but thek = 1 SU(2)×SU(2) WZW model, whose symmetry structure is
apparent in the conformal dimensions of the vertex, the current, the marginal operators and
their descendants. At the pointK = 1, the number of the marginal operator (x = 2, s = 0)
is 9.

TheK = 4 is the BKT multicritical transition point, where the number of the marginal
operator (x = 2, s = 0) is 5. The correspondence of the scaling dimensions for the WZW
point (K = 1) with those for the BKT point (K = 4) is given by

x2m,n(1) = xm,2n(4) (7)

and

xm,2n(1) = xn,2m(4). (8)

Therefore, there is a partial correspondence of the operator content of these two models,
reflecting theZ2 symmetry difference.
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Fortunately, introducing a half-integer magnetic charge, one can obtain the full
correspondence of theK = 1 andK = 4 Gaussian models. With twisted boundary
conditions on a cylinder, or the cut from 0 to infinity on the complex plane, one can
set the arbitrary charges at±∞ (on the cylinder) or at 0,∞ (on the complex plane) [13–15]
(see appendix A). The relation between the twisted boundary condition and the change of
the charges has been observed in the Bethe ansatz solvableS = 1

2 XXZ spin chain [16].
Therefore, with the twist angle8 = π , one can introduce a half-magnetic charge. In that
case, we can set

xTBC
m,n (K) = xm+1/2,n(K). (9)

Then, we obtain

x2m+1,n(1) = xTBC
m,2n(4) (10)

and

xTBC
m,2n(1) = xn,2m+1(4), x

TBC
m,2n+1(1) = xTBC

n,2m+1(4) (11)

so that we can see the correspondence of all the operator content ofK = 1 andK = 4
points, considering twisted boundary conditions.

2.2. Renormalization

Next we introduce the sine-Gordon-type interaction, that is,

LI = yφ

2πα2
: cos
√

8φ : (for K = 1)
yφ

2πα2
: cos
√

2φ : (for K = 4) (12)

(where α is a short-distance (ultraviolet) cut-off). Here we assume that there is no
cos
√

2φ interaction term for theK = 1 case, by the symmetry reason (discrete symmetry
φ→ φ + π/√2 which corresponds to ‘translation by one site’ in the half-odd integer spin
chain [17]) or adjusting parameters. With the simple transformationφ → 2φ, θ → θ/2
or m → 2m, n → n/2, the sine-Gordon model forK = 4 becomes equivalent to the
sine-Gordon model forK = 1.

About the symmetry, theU(1) symmetry ofφ is explicitly broken to the discrete
symmetry φ → φ + 2π/

√
8(K = 1) or φ → φ + 2π/

√
2(K = 4). Furthermore,

the Lagrangian (1) is invariant underφ → φ + π/√8, yφ → −yφ(K = 1) or φ →
φ + π/√2, yφ →−yφ(K = 4).

Under a change of cut-offα → elα, the renormalization group equations for the sine-
Gordon model are [3]

dy0(l)

dl
= −y2

φ(l)

dyφ(l)

dl
= −yφ(l)y0(l)

(13)

whereK = 1+ y0/2 (aroundK = 1) orK = 4(1+ y0/2) (K = 4). For the finite system,
l is related to the system sizeL by l = log(L/α). There are three critical lines;yφ = 0
corresponding to the Gaussian fixed line, andyφ = ±y0(y0 > 0) corresponding to the BKT
lines. On the BKT lines, the couplings behave asy0(l) = ±yφ(l) = 1/(l + 1/y0(0)) =
1/ log(L/L0). In the region between the two BKT lines, all the points will be renormalized
to the Gaussian fixed line, so they are massless. The other region is massive, except on the
Gaussian fixed line.

Although the renormalization group flow is the same between theK = 1 and theK = 4
cases, the operator content is different, and in general the correspondences (8), (11) are not
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Table 1. Operator content of the sine-Gordon (s-G) model atK = 1 andK = 4. Here we
consider the BKT transition of theyφ(l) = y0(l) branch, and we denote the deviationt from
the BKT critical line asyφ(l) = y0(l)(1+ t) (for the yφ(l) = −y0(l)(1+ t) branch, the role of
operatorsxp0↔ xp3, xm5,m6↔ xm7,m8 interchanges).

Operator in Operator in Renormalized Dicrete
s-G model (K = 1) s-G model (K = 4) scaling dimension symmetriesb

xp0 O1,0 +O−1,0 O1/2,0 +O−1/2,0(TBC) 1
2 + 3

4y0(l)(1+ 2
3 t) P = T = 1

xp1,p2 O0,±1 O0,±2
1
2 − 1

4y0(l) P = 1
xp3 O1,0 −O−1,0 O1/2,0 −O−1/2,0(TBC) 1

2 − 1
4y0(l)(1+ 2t) P = T = −1

xc0 2i√
K
∂φ 2i√

K
∂φ 1

xc1,c2 O±1,±1 O±1/2,±2(TBC) 1
xm0 − 4

K
∂φ∂̄φ − 4

K
∂φ∂̄φ 2− y0(l)(1+ 4

3 t) P = T = 1
xm1 O2,0 +O−2,0 O1,0 +O−1,0 2+ 2y0(l)(1+ 2

3 t) P = T = 1
xm2 O2,0 −O−2,0 O1,0 −O−1,0 2+ y0(l) P = T = −1
xm3,m4 O0,±2 O0,±4 2− y0(l) P = 1
xm5,m6 ∂̄O±1,±1 + ∂O∓1,±1 ∂̄O±1/2,±2 + ∂O∓1/2,±2(TBC) 2+ y0(l)(1+ t) P = 1
xm7,m8 ∂̄O±1,±1 − ∂O∓1,±1 ∂̄O±1/2,±2 − ∂O∓1/2,±2(TBC) 2− y0(l)(1+ t) P = −1

P, T should be interpreted asU2πT ,U2πP under TBC.
Strictly speaking, the operators (xm0, xm1) are hybridized under renormalization.

satisfied, since the duality relationK ↔ 1/K does not hold on the BKT linesyφ = ±y0.
Fortunately, the correspondences (7), (10) remain correct after the renormalization, since
the operator product expansion (OPE) structure of both cases is the same, for example,

K = 1 K = 4
〈cos
√

2φ cos
√

8φ cos
√

2φ〉 ↔ 〈cosφ/
√

2 cos
√

2φ cosφ/
√

2〉
〈sin
√

2φ cos
√

8φ sin
√

2φ〉 ↔ 〈sinφ/
√

2 cos
√

2φ sinφ/
√

2〉
〈cos
√

8φM cos
√

8φ〉 ↔ 〈cos
√

2φM cos
√

2φ〉
(14)

which can be seen by the mappingφ → 2φ, θ → θ/2 (similarly, higher OPEs are the
same). The renormalized scaling dimensions are determined by these OPEs [18, 9] (see
appendix B). Therefore, using twisted boundary conditions, we can explicitly see theSU(2)
structure inherent in the BKT transition.

In table 1 we summarize the operator content of the WZW (K = 1) model and that of the
BKT (K = 4) model, with renormalized scaling dimensions. Note that at the BKT critical
line (yφ(l) = y0(l)), there are degeneracies of the excitations corresponding toxp1,p2, xp3 or
xm0, xm3,m4, xm7,m8 or xm2, xm5,m6, respectively, reflecting theSU(2) (SU(2)/Z2) symmetry
(for the yφ(l) = −y0(l) branch, the role of operatorsxp0 ↔ xp3, xm5,m6 ↔ xm7,m8

interchanges). Thus the level crossing of them can be used to determine the BKT critical
point.

In practical systems, there are corrections from the descendant fields of the identity
operator1. The most important irrelevant fields in them areL−2L̄−21, (L2

−2 + L̄2
−2)1 with

scaling dimensionx = 4 [19, 20]. With the twisted boundary conditions, we can use the
level crossing of the lower excitations than those with only the periodic boundary conditions.
Since the amplitude of the corrections from the irrelevant field becomes smaller with the
lower excitations [20], thus the convergence to the transition point is highly improved.
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3. Physical examples

3.1. S = 1 XXZ chain

As a physical example, let us consider theS = 1 XXZ spin chain, described by the
Hamiltonian:

H =
L∑
j=1

hj,j+1, hj,j+1 = 1
2(S
+
j S
−
j+1+ S−j S+j+1)+1Szj Szj+1 (15)

where we assume thatL is even and periodic boundary conditions. This model is invariant
under spin rotation around thez-axis, translation (TR : Sx,y,zj → S

x,y,z

j+1 ), space inversion
(P : Sx,y,zj → S

x,y,z

L−j+1), spin reversal (T : Szj → −Szj , S±j → S∓j ). Therefore, energy
eigenstates are characterized by thez-component of the total spin (SzT =

∑
Szj ), wavenumber

(q = 2πk/L), parity (P = ±1), spin reversal (T = ±1).
Note that with the unitary transformation exp(π i

∑
jSzj ), spin operators change as

Szj → Szj , S
±
j → (−1)jS±j , and the sign of theXY term in (15) reverses. With this

transformation the momentum (or the parity) of the eigenstate for the oddSL+ Szt changes
asq → q + π (P → −P), and the spin reversal for the oddSL changesT → −T , from
the similar calculation in appendix C and exp(2π i(S + Szj )) = 1.

About the spinS XXZ chain, Haldane [21] discussed that for the integerS case, there
are two transition points1c1 < 1 < 1c2, where theXY -Haldane transition1c1 is of the
BKT type, and the Haldane–Ńeel transition point1c2 is of the 2D Ising universality class,
in contrast to the half-odd integerS case where only one transition point exists at1 = 1
of the SU(2) WZW type.

Numerically Botet and Jullien [22] estimated1c1 ≈ 0.1, Sakai and Takahashi [23]
1c1 = −0.01± 0.03, and Yajima and Takahashi [24]1 = 0.069± 0.003. Recently, the
authors found1c1 = 0 and checked the universality class [25] using the level spectroscopy
[9]. We found the exact degeneracy (at least within numerical accuracy) between the
SzT = ±4, q = 0, P = 1 and theSzT = 0, q = 0, P = T = 1 excitations.

These results are obtained under periodic boundary conditions. To consider a twisted
boundary condition, in (15) we replace the boundary term between theLth site and the first
site,

hL,1 = 1
2(S
+
L S
−
1 exp(−i8)+ S−L S+1 exp(i8))+1SzLSz1. (16)

However, with this boundary condition the Hamiltonian (15) is not translational invariant.
The translational invariance can be restored, still maintaining the total angle8, by twisting
all neighbouring bonds in the chain by an angle8/L with the next unitary transformation

U8 = exp

(
i
8

L

L∑
j=1

(
j − 1

2

)
Szj

)
U8S

±
j U

−1
8 = S±j exp(±i(j − 1

2)8/L) U8S
z
j U
−1
8 = Szj

(17)

(in U8 we use(j − 1
2)S

z
j for the compatibility of the definition ofP ). Thus, we obtain

Ht(8) =
∑

htj,j+1 htj,j+1 = 1
2(S
+
j S
−
j+1e−i8/L + S−j S+j+1ei8/L)+1Szj Szj+1. (18)

Under this boundary condition, we had better modify the definition of the translational
operatorT tR ≡ exp(i8SzT /L)TR (see appendix C). Although there are no discrete symmetries
like P, T in general8, for the special angle8 = π , the system (18) is invariant under the
discrete symmetriesU2πP,U2πT . Moreover, it was shown thatU2πP,U2πT are the good
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Figure 1. Excitation energies ofSzT = ±2, q = 0, P = 1 state with PBC (×), and of
Szt = 0, q = 0 states with TBC (• : U2πP = U2πT = −1 and◦ : U2πP = U2πT = 1).

Figure 2. Excitation energies ofSzT = 0, q = 0, P = T = 1 states with PBC (◦), of
SzT = 0, q = 0, P = T = −1 state with PBC (•), of SzT = ±2, q = 0 states with TBC
(×), and ofSzT = ±4, q = 0, P = 1 state with PBC (+).

quantum numbers [26] characterizing the generalizedZ2 × Z2 symmetries [27] (see also
appendix C). Thus the twist angle8 = π has the special meaning in addition to the one
discussed in section 2.

Under PBC, the energy eigenvaluesEn are related to the scaling dimensionxn as

En(L)− Eg(L) = 2πvxn
L

(19)

wherev is the spin wave velocity [28]. The conformal anomalyc is related to the ground-
state energy [13, 29]

Eg(L) = egL− πvc
6L

. (20)
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Figure 3. Energy differenceEc0 − Ec1 for L = 16 systems.

Figure 4. Size dependence of the averaged scaling dimension(xp0 + 3xp1,p2)/3.

In figure 1 we show the excitations corresponding to the scaling dimensionx = 1
2

at the BKT point. The excitationSzT = 0, q = 0, U2πP = U2πT = −1 under TBC
is exactly degenerate with excitationsSzT = ±2, q = 0, P = 1 under PBC at1 = 0.
Figure 2 shows the excitations corresponding to the scaling dimensionx = 2. At 1 = 0,
the excitationsSzT = ±2, q = 0, U2πP = −1 under TBC are exactly degenerate with
excitationsSzT = 0, q = 0, P = T = 1 andSzT = ±4, q = 0, P = 1 under PBC, whereas
the excitationsSzT = ±2, q = 0, U2πP = 1 under TBC are exactly degenerate with the
excitationSzT = 0, q = 0, P = T = −1 under PBC. Figure 3 shows the energy difference
between the excitations forSzT = 0, q = ±2π/L with PBC, and those forSzT = ±2,
q = ±2π/L with TBC. They are exactly degenerate at1 = 0.
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Table 2. d1E/d1|1=0 for L = 16 system.

Excitations d1E/d1|1=0 Expected ratio

p1,p3 0.504 263 15 1/2
m3,m0 1.238 314 39 4/3
m7,m0 0.309 490 32 1/3
m3,m7 0.928 824 06 1
m5,m2 0.938 998 85 1

Figure 5. Excitation energies ofL = 12,D = 0 near theXY -Haldane transition point.×’s are
SzT = ±2, q = 0, P = 1 excitations under PBC,◦’s areSzT = 0, U2πP = U2πT = 1 excitations
under TBC, and•’s areSzT = 0, U2πP = U2πT = −1 under TBC.

Next we discuss the universality relations. The conformal anomaly is estimated
c = 1.000 in [25]. We can eliminate the logarithmic corrections by taking the appropriate
average, for example(xp0 + 2xp1 + xp3) as can be read from table 1. We show the size
dependence of(xp0 + 2xp1 + xp3)/4 in figure 4; the remaining size dependence is mainly
explained by thex = 4 irrelevant field. From table 1, in the neighbourhood of the BKT
transition, there appear terms linear in the distancet from the BKT line. The ratios of
xp3 − xp1, xm7 − xm3, xm5 − xm2, xm0 − xm3, are− 1

2 : −1 : 1 : − 4
3 close to the BKT

line. In table 2, we show the coefficients linear int of the eigenvalues corresponding with
xp3− xp1, xm7− xm3, xm5− xm2, xm0− xm3.

3.2. S = 2 XXZ chain

Next we consider theS = 2 XXZ spin chain, described by the Hamiltonian:

H =
∑

(Sxj S
x
j+1+ Syj Syj+1+1Szj Szj+1+D(Szj )2). (21)

For the isotropic case (1 = 1, D = 0), several studies [30–37] have been done in the
relation to the Haldane’s conjecture [21]. Although the estimated values of the Haldane
gap are widely ranged, they are common on the existence and the smallness of it. Due to
the smallness of the Haldane gap, we can expect that theXY -Haldane phase boundary is
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Figure 6. Size dependence of the crossing point. The extrapolated value is1c = 0.966, which
is the transition point between theS = 2 Haldane gap and theXY phases.

Figure 7. Size dependence of the averaged scaling dimension(xp0 + 3xp1)/4 for 1c.

very close to the isotropic point (1 = 1,D = 0), that is 1−1c (D = 0) andDc1 (1 = 1)
are very small, compared with theS = 1 case [38, 39]. Here we only consider on the line
D = 0, and on the line1 = 1 (D > 0), to estimate theXY -Haldane and theXY -largeD
transition points and to determine the universality class.

First we consider on theD = 0 line. Figure 5 shows the excitation energies with
SzT = ±2, P = 1 under PBC, and withSzT = 0 under TBC forL = 12 systems. We
can see a level crossing which corresponds to the transition point between theXY and
the S = 2 Haldane phases, as is expected from table 1. The size dependence of this
crossing point is shown in figure 6. The extrapolated value to the thermodynamic limit is
1c = 0.966. The conformal anomaly number of this point is estimated asc = 1.16. To
check the universality class, we show the size dependence of the combination of the scaling
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Figure 8. Excitation energies ofL = 10, 1 = 1 near the Haldane-XY and XY -large
D transition points. ×’s are SzT = ±2, q = 0, P = 1 excitations under PBC,◦’s are
SzT = 0, U2πP = U2πT = 1 excitations under TBC, and•’s areSzT = 0, U2πP = U2πT = −1
under TBC.

dimension as(xp0+3xp1)/4 in figure 7. We extrapolate theL→∞ asxc(L) = xc+a1/L
2

for L = 10, 12 andxc(L) = xc + a1/L
2+ a2/L

4 for L = 8, 10, 12, and the obtained values
are 0.487 and 0.491 respectively.

Next we show the result on the1 = 1 (D > 0) line. Figure 8 shows the excitation
energies withSzT = ±2, P = 1 under PBC, and withSzT = 0 under TBC forL = 10
systems. We can recognize the three regions as theS = 2 Haldane phase 0< D < Dc1, the
masslessXY phaseDc1 < D < Dc2, and the largeD phaseDc2 < D. The size dependence
of crossing points is shown in figures 9 and 10, and the estimated values areDc1 = 0.043
andDc2 = 2.39. The estimated conformal anomaly numbers arec = 1.16 and 0.998 for
Dc1 andDc2 respectively. The transition point between theS = 2 Haldane gap and theXY
phases (Dc1) is consistent with the previously obtained values by Schollwöck and Jolicœur
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Figure 9. Size dependence of the crossing point. The extrapolated value isDc1 = 0.043, which
is the transition point between theS = 2 Haldane gap and theXY phases.

Figure 10. Size dependence of the crossing point. The extrapolated value isDc2 = 2.39, which
is the transition point between theXY and the largeD phases.

[34] (Dc1 = 0.04(2)), but the transition point between theXY and the large-D phases
(Dc2) deviates from their value (Dc2 ≈ 3). Figures 11 and 12 show the size dependence of
(xp0 + 3xp1)/4. The extrapolated values forDc1 are 0.489 forL = 10, 12 and 0.493 for
L = 8, 10, 12. ForDc2 the values are 0.5005 forL = 10, 12 and 0.5006 forL = 8, 10, 12.

The conformal anomaly numbers and the scaling dimensions for the critical points
(1,D) = (1c, 0) and (1,Dc1) deviate somewhat from the ideal valuec = 1 andx = 1

2.
We think that at these points the BKT transition points are very close to the 2D Ising
transition line between theS = 2 Haldane and the antiferromagnetic phases [34], so that
the crossover effect is very large for these points. In fact, at the BKT transition point
(1,D) = (1,Dc2) where the 2D Ising transition line is far, these values are consistent with
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Figure 11. Size dependence of the averaged scaling dimension forDc1.

Figure 12. Size dependence of the averaged scaling dimension forDc2.

the ideal values.
In the XY phase on the1 = 1 line, we find that under TBC the energy levels with

SzT = 0, U2πP = U2πT = 1 and withSzT = 0, U2πP = U2πT = −1 cross twice (see
figure 13). These two points correspond to the Gaussian fixed points [15], so that there are
two Gaussian fixed lines in the whole phase diagram of (21). This may be the ‘indirect’
evidence of the intermediate-D phase, predicted by Oshikawa [27]. To see the intermediate-
D phase, Oshikawaet al [40] studied the line1 = 1 with the quantum Monte Carlo method.
However, we cannot find that phase, and we think that in order to find the intermediate-D

phase, one needs to study the region with larger values of1 (>1).
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Figure 13. Size dependence of the Gaussian fixed points inXY phase on the1 = 1 line.

Finally we make the following remark. From the largeS mapping onto the anisotropic
nonlinear sigma model by Haldane [21], 1−1+D is proportional to the anisotropy of it.
Numerical values 1− 1c = 0.034 andDc1 = 0.043 are comparable, thus it is consistent
with Haldane’s arguments.

4. Conclusion

Physical properties of the BKT transition, including the renormalization group properties
and theSU(2) or theSU(2)/Z2 symmetry, have been well investigated in the field theory.
However, the mapping from the various models to the field theoretical models, such as
the sine-Gordon model or the WZW model, is neither simple nor quantitatively correct.
Fortunately, the symmetry structure and the sum rule at the BKT phase transition point
survive after the mapping. Therefore, using these properties, we can determine the BKT
critical point and the universality class.

In numerical calculations,SU(2) symmetry has been used to determine the BKT-type
critical line in [41],SU(2)/Z2 symmetry has been used in [9], and the sum rule to eliminate
logarithmic corrections in [42]. Recently, introducing the half-magnetic charges by twisting
boundary condition, one of the authors has developed a method to determine the Gaussian
fixed line and its universality class for the non-integrable models [15]. In this paper, using
the twisted boundary condition, we explicitly relate the energy eigenvalue structure to the
SU(2) symmetry of the BKT transition. At the same time, we can improve the convergence
of the physical quantities to the thermodynamic limit, in comparison with the original level
spectroscopy [9].

Our method is applicable not only to the quantum problems, but also to the classical
models, treating the eigenvalue structure of the transfer matrix.
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Appendix A. Free boson on the complex plane

We briefly review the free boson theory on the complex plane [43] and the relation between
the half-odd magnetic monopole and twisted boundary conditions [14]. The equation of
motion ∂∂̄φ = 0 for (1) allows the chiral decomposition

φ(z, z̄) =
√
K

2
(ϕ(z)+ ϕ̄(z̄)) (22)

where we introduce the two independent complex coordinatesz = x + iy, z̄ = x − iy and
use the notation∂ = (∂x − i∂y)/2, ∂̄ = (∂x + i∂y)/2. Then the action can be written

S =
∫
L = 1

2π

∫
idz ∧ dz̄

2
∂ϕ∂̄ϕ̄. (23)

The two point functions are

〈ϕ(z)ϕ(w)〉 = − log(z− w) 〈ϕ̄(z̄)ϕ̄(w̄)〉 = − log(z̄− w̄). (24)

A.1. Chiral current

Here we introduce theU(1) chiral current as

J (z) = i∂ϕ(z). (25)

The chiral current has a leading short distance expansion

J (z)J (w) = 1

(z− w)2 + · · · (26)

inferred by taking two derivatives of (24). We introduce the mode expansion of the current

J (z) =
∑
n

z−n−1αn αn =
∮

dz

2π i
znJ (z). (27)

Using the short distance expansion (26) and the radial quantization, we obtain the
commutation relation

[αm, αn] = mδm+n,0 (28)

which means theU(1) current algebra. Note thatα0 is the conserved charge of theU(1)
current.

A.2. Stress–energy tensor

From the Noether theorem, the stress–energy tensor is written as

T (z) = 1
2 : J (z)J (z) : . (29)

Using the short distance expansion (26) and Wick’s theorem, we obtain the OPE of the
T (z), T (w)

T (z)T (w) =
1
2

(z− w)4 +
2T (w)

(z− w)2 +
∂T (w)

z− w + reg. (30)
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which means that this satisfies thec = 1 Virasoro algebra. Similarly, the OPE of the
T (z), J (w)

T (z)J (w) = J (w)

(z− w)2 +
∂J (w)

z− w + reg. (31)

means thatJ (z) is the primary field with the conformal dimension (1,0). The mode
expansion ofT (z) is

T (z) =
∑
n

z−n−2Ln (32)

whereLn can be written

Ln = 1

2

∑
m

: αm+nα−m : (33)

especially

L0 = 1

2
α2

0 +
∞∑
n=1

: α−nαn : . (34)

A.3. Vertex operator

The vertex operator is defined as : exp(iαϕ(z)) :. The OPE of the vertex operator and the
current is

J (z) : eiαϕ(w) := α

z− w : eiαϕ(w) : +reg.. (35)

The OPE of the vertex operator and the stress–energy tensor is

T (z) : eiαϕ(w) := α2/2

(z− w)2 : eiαϕ(w) : +∂w : eiαϕ(w) :

z− w + reg. (36)

therefore the vertex operator is a primary field with conformal dimensionh = α2/2.

A.4. Highest weight states

When we define the state

|α〉 ≡ lim
w→0

: eiαϕ(w) : |0〉 (37)

it is the highest weight state of theU(1) current algebra,

α0|α〉 = α|α〉 αn|α〉 = 0 (n > 0) (38)

from equation (35). This is also the highest weight state of the Virasoro algebra

L0|α〉 = α2

2
|α〉 Ln|α〉 = 0 (n > 0). (39)
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A.5. Compactification of the internal space

The compactification of the internal spaceφ ≡ φ+2π/
√

2 restricts the eigenvaluesα, ᾱ of
theU(1)× U(1) chargesα0, ᾱ0. First we note that

ϕ(z) = q − iα0 logz+ i
∑
n6=0

1

n
z−nαn

ϕ̄(z̄) = q̄ − iᾱ0 log z̄+ i
∑
n6=0

1

n
z̄−nᾱn

(40)

whereq, q̄ are zero modes and satisfy the commutation relation

[q, α0] = [q̄, ᾱ0] = i. (41)

Rotating around the origin 0, there appears a phase factor±2π i in the function
log(z)(log(z̄)). Thus, considering the periodic nature ofφ, we obtain

α − ᾱ =
√

2

K
n (n : integer) (42)

for the requirement of the uniqueness of the vertex operator under the changeφ ≡
φ + 2π/

√
2,

α + ᾱ =
√

2Km (m : integer). (43)

In one word, eigenvalues forα0, ᾱ0 are

α =
√
K

2
m+

√
1

2K
n ᾱ =

√
K

2
m−

√
1

2K
n. (44)

SinceL0± L̄0 are the generators of dilatation and rotation, we identify(α2± ᾱ2)/2 as the
scaling dimension and the conformal spin of the state|α, ᾱ〉. Finally, by defining the dual
field θ to φ as

θ = 1

2
√
K
(ϕ(z)− ϕ̄(z̄)) (45)

θ has a periodicity 2π/
√

2.

A.6. Twisted boundary conditions and background charge

To any conformal operatorf (α0, ᾱ0), we can associate a twisted operator

f22̄(α0, ᾱ0) = exp(−i(2q + 2̄q̄))f (α0, ᾱ0) exp(i(2q + 2̄q̄))
= f (α0+2, ᾱ0+ 2̄). (46)

Here we set

2 = 2̄ =
√
K

2

8

2π
. (47)

On the one hand, from equations (40) this means

φ→ φ − i
K√

2

8

2π
log |z| θ → θ − i

1√
2

8

2π

(
1

2
log

z

z̄

)
(48)

that is, there is a cut forθ .
Mapping from the plane to the cylinder byw ≡ u+ iv = (L/2π) logz, we obtain

φ→ φ − i
K√

2

8

L
u θ → θ + 1√

2

8

L
v (49)
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that is, twisted boundary conditions forθ in the v direction.
On the other hand, the change (46), (47) with equations (42), (43) means the change of

the magnetic charges

m→ m+ 8

2π
n→ n. (50)

This can be interpreted to set a magnetic monopole8/2π at the originz = 0, and a
magnetic monopole−8/2π at the infinityz = ∞.

A.7. Discrete symmetries

For the Gaussian model (23), besides continuousU(1)×U(1) symmetries, there are discrete
symmetries

T : (ϕ, ϕ̄)→ (−ϕ,−ϕ̄) C : (z, ϕ)→ (z̄, ϕ̄). (51)

Appendix B. Calculation of the renormalized scaling dimensions

In this appendix, we calculate the correction of scaling dimensions in table 1, up to the first
order ofy0, yφ in some degenerate cases. The derivation here is simpler than the original
one [18, 9]. Let us consider the following 1D quantum Hamiltonian

H = H0+ λ1

2π

∫ L

0
dvO1 (52)

whereH0 is a fixed point Hamiltonian,L is the system size (in table 1l is related withL
as l = log(L/α)), andO1(= O†1) is a scaling operator whose scaling dimension isx1. We
set the short-range cut-off as 1. According to Cardy [19], the size dependence of excitation
energies up to the first-order perturbation is given by

1En(L) = 2π

L
(xn + Cn1nλ1(L)+ · · ·) = 2π

L
xn(L) (53)

wherexn is the scaling dimension of the operatorOn, Cn1n is the OPE coefficient of operators
On andO1 as

O1(z, z̄)On(0, 0) = Cn1nz
−h1 z̄−h1On(0, 0)+ · · ·

in which h1(= h̄1) is the conformal weight ofO1 (x1 = 2h1). We used the notation

λ1(L) = λ1

(
2π

L

)x1−2

which comes from the renormalization group equation.
For the sine-Gordon model, we denote

K = 4

m2

(
1+ 1

2
y0

)
nearK = 1 (m = 2) orK = 4 (m = 1). We can rewrite the Lagrangian density as

L(z, z̄) = L0(z, z̄)+ LI (z, z̄) (54)

where

L0(z, z̄) = m2

8π
(∇φ)2
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and

LI (z, z̄) = y0

4π
M+ yφ

2
√

2π

√
2 cos
√

2mφ (55)

and we set

λ0 = y0

2
λφ = yφ√

2
. (56)

B.1. xp0 andxp3

We calculatexp0 andxp1 up to the first order ofy’s. We denote operators
√

2 cosmφ/
√

2
(whose scaling dimension isxp0) and

√
2 sinmφ/

√
2 (whose scaling dimension isxp3) as

Oc andOs respectively. We have the following OPE’s

M(z, z̄)Oc,s(0, 0) = 1

2

1

|z|2Oc,s + · · · (57)

√
2 cos
√

2mφ(z, z̄)Oc,s(0, 0) = ± 1√
2

1

|z|2Oc,s(0, 0)+ · · · (58)

where+ is for Oc and− is for Os . From these OPEs and equation (53), we can obtain the
scaling dimensions,

xp0(L) = 1

2
+ 1

2

y0(L)

2
+ 1√

2

yφ(L)√
2

(59)

for
√

2 cosmφ/
√

2, and

xp3(L) = 1

2
+ 1

2

y0(L)

2
− 1√

2

yφ(L)√
2

(60)

for
√

2 sinmφ/
√

2. Settingyφ = y0(1+ t), we have the scaling dimension described in
table 1. These are consistent with the results obtained by Giamarchi and Schulz [18].

Similar calculation can be applied toxm5,m6,m7,m8.

B.2. Marginal operators

For the BKT transition, there exists a hybridization between the marginal fieldM and the
operator

√
2 cos
√

2mφ (m = 2 for K = 1, andm = 1 for K = 4) [9]. These two operators
have the same scaling dimension and symmetries atK = 1 or K = 4. TreatingLI as the
perturbation term, we have the following OPE’s

LI (z, z̄)M(0, 0) = yφ
√

2

2π |z|2
√

2 cos
√

2mφ(0, 0)+ · · ·

LI (z, z̄)
√

2 cos
√

2mφ(0, 0) = y0

2π |z|2
√

2 cos
√

2mφ(0, 0)+ yφ
√

2

2π |z|2M(0, 0)+ · · · .
(61)

Settingyφ = y0(1+ t), and diagonalizing these equations, we have the orthogonal operators,√
2
3(1− 1

9t)M+
√

1
3(1+ 2

9t)
√

2 cos
√

2mφ (62)

with the scaling dimension (up to the first order ofy0 and t)

xm0(L) = 2− y0(L)(1+ 4
3t)

and √
2
3(1− 1

9t)
√

2 cos
√

2mφ +
√

1
3(1+ 2

9t)M (63)
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with the scaling dimension

xm1 = 2+ 2y0(L)(1+ 2
3t).

These scaling dimensions are consistent with the results obtained by one of the authors [9].

Appendix C. Symmetry in twisted boundary conditions

In equation (17), we showed the unitary transformation of TBC for spin operators. In this
appendix we discuss the unitary transformation of other operatorsTR, P, T . They are not
well defined except for the special8, in contrast to the spin operators.

C.1. Translation operator

The unitary operatorU8 of the twisted boundary condition (17) is transformed with the
translation as

TRU8[TR]−1 = exp

(
i8

L

L∑
j=1

(j − 1
2)S

z
j+1

)

= U8 exp

(
− i8

L
SzT

)
exp(i8Sz1) (64)

therefore, we obtain

U8TR[U8]−1 = exp(−i8Sz1)T
t
R (65)

where we introduce the operatorT tR ≡ exp(i8SzT /L)TR. The operator exp(−i8Sz1) is not
well defined except for8 = 2πl(l : integer)

U2πlTR[U2πl ]
−1 = (−1)2SlT tR. (66)

In the notationT tR, the periodicity of the energy and the momentum eigenvalue under
8→ 8+2π(S : integer) or8→ 8+4π(S : half-odd integer) [44, 45] becomes apparent,
in contrast to [46, 47]. Note that when we define the wavenumberq ′ ≡ q +8SzT /L as

T tR|ψ(q, SzT ,8)〉 = exp(i(q +8SzT /L))|ψ(q, SzT ,8)〉 (67)

Lq ′/2π is not integer in general, although it corresponds to the eigenvaluemn+n8/2π of
the conformal spin operatorL0 − L̄0 under TBC (see equations (39), (42), (43), (50)), and
T tR has a more natural symmetry structure thanTR, as will be seen later.

C.2. Discrete symmetriesP, T

The unitary operatorU8 is transformed with the parity as

PU8P = exp

(
i8

L

L∑
j=1

(j − 1
2)S

z
L+1−j

)
= U−8 exp(i8SzT ) (68)

therefore, we obtain

U8P [U8]−1 = U28P exp(−i8SzT ). (69)

The operator exp(i8SzT ) is not well defined except for8 = πl(l:integer)

UπlP [Uπl ]
−1 = (−1)S

z
T lU2πlP (70)
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where we use thatSzT is integer. In this case, we obtain

(U2πlP )
2 = 1. (71)

Similarly, we obtain

U8T [U8]−1 = U28T (72)

and

(U28T )
2 = 1. (73)

For the twist angle8 = πl, Hamiltonian (18) commutes with the operators
U2πlP , U2πlT . Moreover, these operators formsZ2 group, that is, the eigenvalue of
U2πP,U2πT is ±1.

Next for the twist angle8 = πl, we discuss the relation between the operatorU2πlP

and the translation operatorT tR. Using (64), we obtain

T tRU2πlPT
t
R = exp

(
2π il

L
SzT

)
TRU2πl [TR]−1TRPTR

= exp(2π iSz1l)U2πlP . (74)

Since the operator exp(2π iSz1) is ±I for S integer or half-integer, this means

T tR(U2πlP ) = (−1)2Sl(U2πlP )(T
t
R)
−1 (75)

that is, in the momentum space for the even-integer 2Sl, the spectrum is symmetric with
respect toq = 0, π , whereas for the odd-integer 2Sl, the spectrum is symmetric with respect
to q = ±π/2. For the half-odd integerS case, under TBC (8 = π ) the ground state (q = 0)
is exactly degenerate with a stateq = π [46], which is related to the Gaussian transition
[26].

C.3. Valence bond solid states

As an application of the previous sections, we discuss the generalizedZ2×Z2 symmetries
or valence bond solid (VBS) [27] under the twisted boundary condition. It was shown that
under the twisted boundary conditions the quantum numbersP, T are the good quantum
numbers characterizing the generalizedZ2×Z2 symmetries [26]. Here we generalize these
results for the twisted boundary conditions with the translational invariant case.

The spin variable can be represented by the Schwinger bosons as follows

Szj = 1
2(a
+
j aj − b+j bj ) S+j = a+j bj S−j = ajb+j (76)

with the constraint that the boson occupation number at each sitea+j aj + b+j bj is 2S.
The VBS states with the TBC can be written as

|S,M, T BC(8 = π)〉 = (a+L b+1 e−iπ/2L − b+La+1 eiπ/2L)S−M

×
L/2−1∏
j=1

(a+2j−1b
+
2je
−iπ/2L − b+2j−1a

+
2je

iπ/2L)S+M

×(a+2j b+2j+1e−iπ/2L − b+2j a+2j+1eiπ/2L)S−M

×(a+L−1b
+
Le−iπ/2L − b+L−1a

+
Leiπ/2L)S+M |0〉 (77)

whereM is an integer for the integerS, or a half-odd integer for the half-odd integerS
(here we include bond-alternating cases). First we make a parity transformation for the
VBS state

P |S,M, T BC(8 = π)〉 = (−1)SL|S,M, T BC(8 = −π)〉 (78)
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where we useP |0〉 = |0〉. Then twisting withU2π , we obtain

U2πP |S,M, T BC(8 = π)〉 = (−1)SL−S+M |S,M, T BC(8 = π)〉 (79)

where we useU2π |0〉 = |0〉, andU2πa
+
L b
+
1 U
−1
2π = a+L b

+
1 exp(2π i(L − 1)/2L). The same

discussion applies forU2πT . Therefore, each M-VBS states is characterized by the discrete
quantum numbersU2πP = U2πT = (−1)SL−S+M .

Similarly we can classify the intermediate largeD phase with the discrete quantum
numberU2πP,U2πT under TBC.
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