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Abstract. The Berezinskii—Kosterlitz—Thouless (BKT) transition, the transition of the two-
dimensional sine-Gordon model, plays an important role in low-dimensional physics. We relate
the operator content of the BKT transition to that of & (2) Wess—Zumino—Witten model,
using twisted boundary conditions. With this method, in order 1 to determine the BKT
critical point, we can use the level crossing of the lower excitations instead of those for the
periodic boundary case, thus the convergence to the transition point is highly improved. We
verify the efficiency of this method by applying it to tlfe= 1, 2 spin chains.

1. Introduction

The Berezinskii—Kosterlitz—Thouless (BKT) transition [1-3] plays an important role in 2D
classical and one-dimensional (1D) quantum systems, such as thEY2Bpin model,

2D helium film, 2D superconducting film, roughening transition, 1D quantum spin models
and 1D electron systems. Furthermore, the BKT transition is a typical instability of the
Tomonaga-Luttinger liquid, such as the Mott transition in 1D metal [4].

It was a difficult problem to determine numerically the critical point and the universality
class of the BKT transition, because of logarithmic corrections and the slow divergence of
the inverse correlation length (or the energy gap) [5]. Moreover, it is hard to distinguish
the BKT transition from the second-order transition, by using the conventional finite-size-
scaling method [6, 7]. In fact, for the exactly solvalfie= % XXZ spin chain, where
the transition atA = 1 is of the BKT type, the finite-size scaling method leads to false
conclusions [8]. This problem was successfully resolved by the level spectroscopy [9],
based on the renormalization group calculation andSb&2)/Z, symmetry in the BKT
transition.

The SU(2) symmetry inherent in the BKT transition was pointed out by Halpern [10]
and Bankset al [11]. They showed the equivalence between §li&2) massless Thirring
model and the theory of the bosons consisting of a free field plé%-a 87 sine-Gordon
model, which corresponds to the BKT line. Another approach was proposed by Ginsparg
[12], based on the = 1 conformal field theory: modding out th#/ (2) symmetry model
by Z, symmetry gives the structure of the BKT multicritical point.

In this paper we directly relate th&U (2)/Z, structure of the operator content of the
BKT transition to that of thek = 1 SU(2) Wess—Zumino-Witten (WZW) model, using
twisted boundary conditions (TBC). With this method, in order to determine the BKT
critical point, we can use the level crossing of the lower excitations than those under the

0305-4470/98/367341+22$19.50C) 1998 IOP Publishing Ltd 7341



7342 K Nomura and A Kitazawa

periodic boundary conditions (PBC), thus the convergence to the transition point is highly
improved. We then apply the method to thie= 1, 2 spin chains.

2. BKT transition and twisted boundary condition

2.1. On the Gaussian line

We consider the 2D Gaussian model defined as the Lagrangian
1
Lo=——(V$)>. 1
0 ZnK( () (2)

We compactifyp on a circle agp = ¢ +27/+/2. We introduce the dual fielél to ¢ defined
as
¢ = —9,(iK6) dy¢ = 0, (1K0) 2)

which has the periodic natute= 6 + 27/+/2.
The vertex operator defined as

O =: €XPim~/2¢) expiiny/26) (3)
has a scaling dimensiar, , and a conformal spig,, ,,

1 2 n?

X (K) = > (m K + f) Smn = M. (4)

There are other types of fields, i.e. the current fields
2i 2i -

—9 —9 5

NS, sl ©)
which havex = 1, s = +1, and the marginal field

4 1
M= —2093¢ = —— (:9)* + 3,9)%) (6)

which hasx = 2, s = 0. There also exist descendant fields of them.

About the symmetry, the Gaussian model (1) is invariant ugder ¢ + constanté —
0 + constant, which means thg(1) x U(1) continuous symmetry. There are also the
discreteZ, symmetriesT : (z,¢,60) — (z, —¢,—0) andC : (z,¢,0) — (Z, ¢, —0) (we
can also define the redundant symme#y= CT : (z, ¢,0) — (Z, —¢, 0)). The Gaussian
model is invariant under the dual transformatign< 1/K, ¢ < 6. The self-dual point
K = 1is nothing but th& = 1 SU(2) x SU(2) WZW model, whose symmetry structure is
apparent in the conformal dimensions of the vertex, the current, the marginal operators and
their descendants. At the poiit = 1, the number of the marginal operatar=£ 2, s = 0)
is 9.

The K = 4 is the BKT multicritical transition point, where the number of the marginal
operator £ = 2, s = 0) is 5. The correspondence of the scaling dimensions for the WZW
point (K = 1) with those for the BKT pointK = 4) is given by

X2m,n D = xm,Zn(4) (7)
and
xm,Zn(l) = Xn,2m 4. (8)

Therefore, there is a partial correspondence of the operator content of these two models,
reflecting theZ, symmetry difference.
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Fortunately, introducing a half-integer magnetic charge, one can obtain the full
correspondence of th& = 1 and K = 4 Gaussian models. With twisted boundary
conditions on a cylinder, or the cut from 0 to infinity on the complex plane, one can
set the arbitrary charges #bo (on the cylinder) or at Oco (on the complex plane) [13-15]

(see appendix A). The relation between the twisted boundary condition and the change of
the charges has been observed in the Bethe ansatz soE/ablé XXZ spin chain [16].
Therefore, with the twist anglé = =, one can introduce a half-magnetic charge. In that
case, we can set

X B(K) = Xiny1/20(K). ©)
Then, we obtain

Xomi1n(D) = x5, (4) (10)
and

Xz (D) = Xn2mr1(8), X050 1 (D) = x, 50 1 (4) (11)

so that we can see the correspondence of all the operator contéht-ofl andK = 4
points, considering twisted boundary conditions.

2.2. Renormalization
Next we introduce the sine-Gordon-type interaction, that is,
L =522 :cosv8p: (for K = 1) Y cosv2 : (for K = 4) (12)

2w a? 2 a?
(where « is a short-distance (ultraviolet) cut-off). Here we assume that there is no
cosv/2¢ interaction term for the&k = 1 case, by the symmetry reason (discrete symmetry
¢ — ¢ + /+/2 which corresponds to ‘translation by one site’ in the half-odd integer spin
chain [17]) or adjusting parameters. With the simple transformagion 2¢,0 — 6/2
orm — 2m,n — n/2, the sine-Gordon model foK = 4 becomes equivalent to the
sine-Gordon model foK = 1.

About the symmetry, thd/(1) symmetry of¢ is explicitly broken to the discrete
symmetry¢ — ¢ + 27/v8(K = 1) or ¢ — ¢ + 27/v/2(K = 4). Furthermore,
the Lagrangian (1) is invariant under — ¢ + 7/+/8, Yo = —Vp(K =1 or¢ —
¢+ /Y2 yp = —yp(K = 4.

Under a change of cut-off — €«, the renormalization group equations for the sine-
Gordon model are [3]

dyo(l
o0~z

& gl(l) = —3)yo0)

whereK = 1+ yo/2 (aroundK = 1) or K = 4(1 + yo/2) (K = 4). For the finite system,
I is related to the system size by I = log(L/«). There are three critical linesy, = 0
corresponding to the Gaussian fixed line, agd= £yo(yo > 0) corresponding to the BKT
lines. On the BKT lines, the couplings behaveyadl) = xy,() = 1/( + 1/y0(0)) =
1/1og(L/Lo). In the region between the two BKT lines, all the points will be renormalized
to the Gaussian fixed line, so they are massless. The other region is massive, except on the
Gaussian fixed line.

Although the renormalization group flow is the same betweerkthe 1 and thek = 4
cases, the operator content is different, and in general the correspondences (8), (11) are not

(13)
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Table 1. Operator content of the sine-Gordon (s-G) modeKat= 1 and K = 4. Here we
consider the BKT transition of the, (/) = yo(/) branch, and we denote the deviatiofrom
the BKT critical line asyy (/) = yo(1)(1+ 1) (for the ys (1) = —yo(1)(1+ 1) branch, the role of
operatorse?0 « xP3 xm5m6 o yxmTm8 interchanges).

Operator in Operator in Renormalized Dicrete
s-G model K = 1) s-G model K = 4) scaling dimension symmetrfes
xP0 010+ O_10 01/2,0 + 0_1/2,0(TBC) % +3%0@A+3) P=T=1
xPLp2 00,41 0Oo,+2 i 20 pP=1
xP3 O010— 0_10 01/2,0 — O_1/2,0(TBC) 5= %yo(l)(l-i- 2t) P=T=-1
x0 Zo¢ 290 1
xebe2 041,41 Ox+1/2,+2(TBC) 1
- ~ 5 9639 —x 9639 2—yohL+4)  P=T=1
xm1 020+ 0_20 010+ O_10 2+ 201+ 30) P=T=1
xm2 020— 0-20 0O10—0_10 2+ yo(l) P=T=-1
xm3mA 0012 00,+4 2 —yo() P=1
xmBME 5041 41+ 305141 00417242 +3051/242(TBC) 24 yo(D(1+1) P=1
xaMTm8 5041 41— 051,41 0041/2.42 — 3051/2,42(TBC)  2— yo()(1+1) P=-1

P, T should be interpreted d$,, T, U,, P under TBC.
Strictly speaking, the operators”(, x™1) are hybridized under renormalization.

satisfied, since the duality relaticki <» 1/K does not hold on the BKT lineg, = %yo.
Fortunately, the correspondences (7), (10) remain correct after the renormalization, since
the operator product expansion (OPE) structure of both cases is the same, for example,

K=1 K=4

(COSv/2¢ COSV/8p COSV2p) < (COSP/~/2 COSV2¢) COSP //2) ”

(siny/2¢ cosv/8p sinv2¢) <  (sing/+/2 cosv/2¢ sing /v/2) (14)
(COSV/BpM cOSy/8Bp) < (COSYV/2¢M cOSv/2¢)

which can be seen by the mappigg— 2¢,60 — 6/2 (similarly, higher OPEs are the
same). The renormalized scaling dimensions are determined by these OPEs [18, 9] (see
appendix B). Therefore, using twisted boundary conditions, we can explicitly seH#®
structure inherent in the BKT transition.

In table 1 we summarize the operator content of the WANL 1) model and that of the
BKT (K = 4) model, with renormalized scaling dimensions. Note that at the BKT critical
line (ys(1) = yo(1)), there are degeneracies of the excitations correspondingf-#%, x”3 or
x™M0, xm3ma xyml.m8 gr xym2 xmSmé respectively, reflecting th&U (2) (SU(2)/Z,) symmetry
(for the y,(I) = —yo(l) branch, the role of operators”® <> x73 xm5m6 <5 ymim8
interchanges). Thus the level crossing of them can be used to determine the BKT critical
point.

In practical systems, there are corrections from the descendant fields of the identity
operatorl. The most important irrelevant fields in them dre,L 1, (L2, + L?,)1 with
scaling dimensionx = 4 [19, 20]. With the twisted boundary conditions, we can use the
level crossing of the lower excitations than those with only the periodic boundary conditions.
Since the amplitude of the corrections from the irrelevant field becomes smaller with the
lower excitations [20], thus the convergence to the transition point is highly improved.
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3. Physical examples

3.1.S=1XXZ chain

As a physical example, let us consider the= 1 XXZ spin chain, described by the
Hamiltonian:

L
H =Y hjj1hjja=3(S S+ 8 Sy +ASiST, (15)

j=1
where we assume that is even and periodic boundary conditions. This model is invariant
under spin rotation around theaxis, translation Iz : §;”** — S;;7°), space inversion
(P 87" — §;75), spin reversal [ : S; — —Si, Si — SF). Therefore, energy
elgenstates are charactenzed byzthmmponent of the total spisf =Y S;), wavenumber
(g = 27k/L), parity (P = 1), spin reversal{ = +1).

Note that with the unitary transformation e(np'ZjS’) spin operators change as
Si — §5,8° — (-1’5, and the sign of theXY term in (15) reverses. With this
transformatlon the momentum (or the parity) of the eigenstate for theSadd S? changes
asq — g+ (P — —P), and the spin reversal for the odd. changesl’ — —T, from
the similar calculation in appendix C and &€2pi(S + Sf)) =1

About the spinS XX Z chain, Haldane [21] discussed that for the inte§arase, there
are two transition pointd\.; < 1 < A.,, where theXY-Haldane transitiom\.; is of the
BKT type, and the Haldane-é¢l transition pointA ., is of the 2D Ising universality class,
in contrast to the half-odd integesr case where only one transition point existsaat= 1
of the SU (2) WZW type.

Numerically Botet and Jullien [22] estimatefd.; ~ 0.1, Sakai and Takahashi [23]
A, = —0.01+ 0.03, and Yajima and Takahashi [24] = 0.069+ 0.003. Recently, the
authors foundA.; = 0 and checked the universality class [25] using the level spectroscopy
[9]. We found the exact degeneracy (at least within numerical accuracy) between the
S =44,q=0,P=1and theS; =0,¢g =0, P =T = 1 excitations.

These results are obtained under periodic boundary conditions. To consider a twisted
boundary condition, in (15) we replace the boundary term betweenhtthsite and the first
site,

hia= 3(S; Sy exp(—i®) + S; ST explid)) + AS; S5 (16)

However, with this boundary condition the Hamiltonian (15) is not translational invariant.
The translational invariance can be restored, still maintaining the total @ngdg twisting
all neighbouring bonds in the chain by an andgl¢L with the next unitary transformation

D& 1
Up = expli— i— =) s
® XD(IL;<] 2) ,) (17)

UpS: Uyt = S exp(£i(j — 3)®/L) UpSiUgy™ = S;
(in Uy we use(j — %)S? for the compatibility of the definition o). Thus, we obtain

H(®) = "hi 0y B =388 &7t 4 5755 ,d%0) + ASEST .

(18)
Under this boundary condition, we had better modify the definition of the translational
operatorT; = exp(i® S5 /L) Tg (see appendix C). Although there are no discrete symmetries
like P, T in general®, for the special angl® = n, the system (18) is invariant under the

discrete symmetrie&,, P, U, T. Moreover, it was shown thdt,, P, U,, T are the good
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N =16
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0.3_— XXXXX Oooo.‘...—“
L x
0.25-IIILJIIIIIIIIIIIIII
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Figure 1. Excitation energies ofS. = +2,q = 0, P = 1 state with PBC %), and of
S7 =0, q = 0 states with TBC{: Uzy P = U, T = —1 ando : Up; P = U, T = 1).

17\7316
T T
1.5 F <
oOOOOOOOX
1.4-0000000000 XXXXXX _
ooooooooogu‘éoooooﬁ .
x X k4
L3F o ox x X7 L+
AE x X + T
5585550
1.2-2999Qi§g$* K
+ +
Llpp+ % -
1|1:|[||1;l11|;[111r
-0.1 -0.05 0 0.05 0.1
A

Figure 2. Excitation energies off;, = 0,q = 0,P = T = 1 states with PBCd), of
S5 =0,g =0,P =T = —1 state with PBC {), of §7 = +2,4 = 0 states with TBC
(x), and of §%. = £4,4 = 0, P = 1 state with PBC ).

guantum numbers [26] characterizing the generaliZedk Z, symmetries [27] (see also
appendix C). Thus the twist angte = 7 has the special meaning in addition to the one
discussed in section 2.
Under PBC, the energy eigenvalugg are related to the scaling dimension as
2w vx,
19
3 (19)

wherew is the spin wave velocity [28]. The conformal anomalis related to the ground-
state energy [13, 29]
Ve
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Figure 3. Energy difference£® — E<! for L = 16 systems.

(2P + 32P1P2) /4
0.502 | T |
0.5015
0.501
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0 0.005 0.01 0.015
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Figure 4. Size dependence of the averaged scaling dimengigh+ 3x7172)/3.

In figure 1 we show the excitations corresponding to the scaling dimemsien%
at the BKT point. The excitatior§;. = 0,q = 0,U> P = UxT = —1 under TBC
is exactly degenerate with excitatios$ = £2,¢q = 0, P = 1 under PBC atA = 0.
Figure 2 shows the excitations corresponding to the scaling dimensier?2. At A = 0,
the excitationsSy. = +2,¢q = 0,U>, P = —1 under TBC are exactly degenerate with
excitationsSy. = 0,9 =0, P =T =1 andS; = £4,9 = 0, P = 1 under PBC, whereas
the excitationsS;. = £2,9 = 0, U, P = 1 under TBC are exactly degenerate with the
excitationS%. = 0,¢g =0, P = T = —1 under PBC. Figure 3 shows the energy difference
between the excitations fa§;. = 0, ¢ = +27/L with PBC, and those foS; = £2,
g = +2x/L with TBC. They are exactly degenerate/mt= 0.
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Table 2. dAE/dA|a—o for L = 16 system.

Excitations d\E/dA|a—o Expected ratio

pl,p3 0.504 26315 1/2
m3,m0 1.238314 39 4/3
m7,m0 0.309490 32 1/3
m3,m7 0.928824 06 1
m5,m2 0.938998 85 1
L =12
2 T T T T T T T T T 1
.
* . . . . . i . *
1.5 F -
o o .
AE 1 ° 4 x X x =
X X x X o
o
0
0.5+ o 4
0 L | ! i ! L | | !
0.9 0.92 0.94 0.96 0.98 1
A

Figure 5. Excitation energies of. = 12, D = 0 near theXY-Haldane transition pointx’s are
S5 ==£2,q =0, P = 1 excitations under PBG/s are S5. = 0, Uz, P = Uz, T = 1 excitations
under TBC, and’s are §3. = 0, Uz, P = U2, T = —1 under TBC.

Next we discuss the universality relations. The conformal anomaly is estimated
¢ = 1.000 in [25]. We can eliminate the logarithmic corrections by taking the appropriate
average, for exampléx?® + 2x?! + xP%) as can be read from table 1. We show the size
dependence ofx?° 4 2x?! + x73)/4 in figure 4; the remaining size dependence is mainly
explained by ther = 4 irrelevant field. From table 1, in the neighbourhood of the BKT
transition, there appear terms linear in the distandeom the BKT line. The ratios of
xP3 — xPL T — xm3, xmS — xm2 xm0 _ xm3 gre—1:—1:1:—% close to the BKT
line. In table 2, we show the coefficients linearrinf the eigenvalues corresponding with

xp3 _ xpl' xm7 _ xm3, xm5 _ me, me _ xm3.

3.2.§ =2 XXZ chain
Next we consider th = 2 XX Z spin chain, described by the Hamiltonian:
H =) (S/S}ia+ 8]+ AS;Sia + D(SH?). (21)

For the isotropic caseN = 1, D = 0), several studies [30-37] have been done in the
relation to the Haldane’s conjecture [21]. Although the estimated values of the Haldane
gap are widely ranged, they are common on the existence and the smallness of it. Due to
the smallness of the Haldane gap, we can expect thakhelaldane phase boundary is
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1 T T T T T

0.9 r -

085 { | | 1 1 1
0 001 002 003 004 005 006 007

1/12

Figure 6. Size dependence of the crossing point. The extrapolated valtvg s 0.966, which
is the transition point between the= 2 Haldane gap and th€Y phases.

0.5 T T T T T

0.49 .

0.48 - .

0.47 .

0.46 - -

I i l i !
0 0.005 0.01 0.015 0.02 0.025 0.03
1/1?

0.45

Figure 7. Size dependence of the averaged scaling dimengi®h+ 3x”1)/4 for A..

very close to the isotropic poinA(= 1, D = 0), that is 1- A, (D = 0) andD.; (A = 1)
are very small, compared with the= 1 case [38, 39]. Here we only consider on the line
D =0, and on the line&A = 1 (D > 0), to estimate th&XY-Haldane and th&XY-large D
transition points and to determine the universality class.
First we consider on thé® = 0 line. Figure 5 shows the excitation energies with
S% = £2, P = 1 under PBC, and witt§% = 0 under TBC forL = 12 systems. We
can see a level crossing which corresponds to the transition point betweenYtrand
the S = 2 Haldane phases, as is expected from table 1. The size dependence of this
crossing point is shown in figure 6. The extrapolated value to the thermodynamic limit is
A, = 0.966. The conformal anomaly number of this point is estimated as1.16. To
check the universality class, we show the size dependence of the combination of the scaling
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2.5 T T T T T T
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2_000...0....._‘,

1.5+ -
AE x x X X X @ o] o

0.5¢ -

0 ! i i | 1 1
0 0.02 004 006 008 01 0.12

2.2 T T T T

216 o o o o o o o o o -
2L ]
1.9
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AFE

l
{
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xXO
>0
©

-]
0.4
X

OoX

oxX

{ 1 1 i

1.5
2.32 2.34 2.36 2.38 24 2.42
D

Figure 8. Excitation energies oL = 10, A = 1 near the Haldan&Y and XY-large
D transition points. x’'s are S} = £2, ¢ = 0, P = 1 excitations under PBCy’s are
S5 =0, Uz P = U, T =1 excitations under TBC, anés are S5 =0, U P = Uz, T = —1
under TBC.

dimension agx?°+3x”1)/4 in figure 7. We extrapolate the — oo asx.(L) = x.+ay/L?
for L =10, 12 andx.(L) = x. +a1/L? 4+ ay/L* for L = 8, 10, 12, and the obtained values
are 0487 and (491 respectively.

Next we show the result on thda = 1 (D > 0) line. Figure 8 shows the excitation
energies withS;. = £2, P = 1 under PBC, and wit§% = 0 under TBC forL = 10
systems. We can recognize the three regions a$ the? Haldane phase & D < D4, the
masslesxXY phaseD.; < D < D, and the largeD phaseD., < D. The size dependence
of crossing points is shown in figures 9 and 10, and the estimated valud.ate 0.043
and D., = 2.39. The estimated conformal anomaly numbersare 1.16 and 0.998 for
D.1 and D, respectively. The transition point between the- 2 Haldane gap and th€Y
phases D.1) is consistent with the previously obtained values by Schintkvand Jolicoeur
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0.2 T T T T I I
0.15 + .
Dcl 0.1+ _
0.05 -
0 i { i | H |
0 0.01 002 003 004 0.05 006 0.07
1/L2

Figure 9. Size dependence of the crossing point. The extrapolated valdg is- 0.043, which
is the transition point between the= 2 Haldane gap and th€Y phases.

24 T T T T T T
2.35 —
Dc2
2.3 -
I i It i 1 i
0 0.01 0.02 003 0.04 005 0.06 0.07
/L2

Figure 10. Size dependence of the crossing point. The extrapolated valg is- 2.39, which
is the transition point between théY and the largeD phases.

[34] (D1 = 0.04(2)), but the transition point between theéY and the largeP phases
(D.2) deviates from their valuelf., ~ 3). Figures 11 and 12 show the size dependence of
(xP° + 3xP1) /4. The extrapolated values fdb.; are 0489 for L = 10, 12 and 0493 for
L =8,10,12. ForD,, the values are.8005 forL = 10, 12 and 05006 forL = 8, 10, 12.

The conformal anomaly numbers and the scaling dimensions for the critical points
(A, D) = (A.,0) and (1, D.;) deviate somewhat from the ideal value= 1 andx = %
We think that at these points the BKT transition points are very close to the 2D Ising
transition line between thd = 2 Haldane and the antiferromagnetic phases [34], so that
the crossover effect is very large for these points. In fact, at the BKT transition point
(A, D) = (1, D) where the 2D lIsing transition line is far, these values are consistent with
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Figure 11. Size dependence of the averaged scaling dimensio®for
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Figure 12. Size dependence of the averaged scaling dimensio®for

the ideal values.

In the XY phase on theA = 1 line, we find that under TBC the energy levels with
S5 = 0,Up P = Up T = 1 and with S5 = 0, U, P = U, T = —1 cross twice (see
figure 13). These two points correspond to the Gaussian fixed points [15], so that there are
two Gaussian fixed lines in the whole phase diagram of (21). This may be the ‘indirect’
evidence of the intermediatB-phase, predicted by Oshikawa [27]. To see the intermediate-
D phase, Oshikawat al [40] studied the lineA = 1 with the quantum Monte Carlo method.
However, we cannot find that phase, and we think that in order to find the intermétiate-

phase, one needs to study the region with larger values 0f1).
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Figure 13. Size dependence of the Gaussian fixed point¥ fhphase on theA =1 line.

Finally we make the following remark. From the lar§enapping onto the anisotropic
nonlinear sigma model by Haldane [21]-1A + D is proportional to the anisotropy of it.
Numerical values + A, = 0.034 andD.; = 0.043 are comparable, thus it is consistent
with Haldane’s arguments.

4. Conclusion

Physical properties of the BKT transition, including the renormalization group properties
and theSU(2) or the SU(2)/Z, symmetry, have been well investigated in the field theory.
However, the mapping from the various models to the field theoretical models, such as
the sine-Gordon model or the WZW model, is neither simple nor quantitatively correct.
Fortunately, the symmetry structure and the sum rule at the BKT phase transition point
survive after the mapping. Therefore, using these properties, we can determine the BKT
critical point and the universality class.

In numerical calculations§U (2) symmetry has been used to determine the BKT-type
critical line in [41], SU (2)/Z, symmetry has been used in [9], and the sum rule to eliminate
logarithmic corrections in [42]. Recently, introducing the half-magnetic charges by twisting
boundary condition, one of the authors has developed a method to determine the Gaussian
fixed line and its universality class for the non-integrable models [15]. In this paper, using
the twisted boundary condition, we explicitly relate the energy eigenvalue structure to the
SU (2) symmetry of the BKT transition. At the same time, we can improve the convergence
of the physical quantities to the thermodynamic limit, in comparison with the original level
spectroscopy [9].

Our method is applicable not only to the quantum problems, but also to the classical
models, treating the eigenvalue structure of the transfer matrix.
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Appendix A. Free boson on the complex plane

We briefly review the free boson theory on the complex plane [43] and the relation between
the half-odd magnetic monopole and twisted boundary conditions [14]. The equation of
motion d9¢ = 0 for (1) allows the chiral decomposition

K
¢(z,2) = J—;@(@ +¢(2)) (22)

where we introduce the two independent complex coordinatest + iy, z = x — iy and
use the notatiod = (3, —9,)/2, d = (3, +19,)/2. Then the action can be written

1 idzAdz, -_
S = /E = Z/ > 0pdQ. (23)
The two point functions are
(p(@9w)) = —log(z — w) (p@eW)) = —log(z — w). (24)

A.1. Chiral current
Here we introduce thé&/ (1) chiral current as
J(z) =id¢(2). (25)

The chiral current has a leading short distance expansion

1
JQJI(w) = — 26
(2)J (w) G —w)? + (26)
inferred by taking two derivatives of (24). We introduce the mode expansion of the current
dz
J(z) = 1y, n=Q —2"J(2). 27
() ;z o a jg i’ () (27)

Using the short distance expansion (26) and the radial quantization, we obtain the
commutation relation

[amv an] = m(Sern,O (28)

which means thd/(1) current algebra. Note that, is the conserved charge of tlig(1)
current.

A.2. Stress—energy tensor
From the Noether theorem, the stress—energy tensor is written as
T@=3:7@J@:. (29)

Using the short distance expansion (26) and Wick’s theorem, we obtain the OPE of the
T (z), T(w)

1 2T(w) T (w)
2
z—w?* G—w? z-—w treg (30)

T()T(w) =
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which means that this satisfies thke= 1 Virasoro algebra. Similarly, the OPE of the
T(z), J(w)

T w) = L W) eg (31)
(z—w) Z—w

means that/(z) is the primary field with the conformal dimension (1,0). The mode
expansion ofl'(z) is

T() =Y z "L, (32)

where L, can be written

1
L,= 5 Zn: C QO . (33)
especially
1 o0
Lo= Eaé + HZ; L0y, . (34)

A.3. Vertex operator
The vertex operator is defined as : égu(z)) ;. The OPE of the vertex operator and the
current is

J(@) e = 2

— g™ - yreg. (35)

The OPE of the vertex operator and the stress—energy tensor is

o?/2 ;
— 1= gae) .
(z — w)? + Z—w

B, : G0

T(z) : €4™ = " +reg (36)

therefore the vertex operator is a primary field with conformal dimenaiena?/2.

A.4. Highest weight states

When we define the state

la) = lim : 2™ :|0) (37)

w—0
it is the highest weight state of tHé(1) current algebra,
apla) = aler) oyla) =0 (n>0) (38)

from equation (35). This is also the highest weight state of the Virasoro algebra

2
Lole) = =) Lyla) =0 (n>0). (39)
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A.5. Compactification of the internal space

The compactification of the internal spage= ¢ + 27/+/2 restricts the eigenvalues @ of
the U (1) x U (1) chargesxg, @p. First we note that

. 1
9(x) =q —iaglogz +i)_ ~z7"a,

n
n#0
- (40)
@) =¢q —iaglogz +i Z -7 "y,
n;éO
wheregq, g are zero modes and satisfy the commutation relation
[q, @] = [g, a0] =1i. (41)

Rotating around the origin 0, there appears a phase fattdti in the function
log(z)(log(z)). Thus, considering the periodic naturedafwe obtain

a—a= \/%n (n : intege) (42)

for the requirement of the uniqueness of the vertex operator under the clgange

¢ +21/V2,
a+a=+2Km (m : intege). (43)
In one word, eigenvalues far, @y are

_ KL [T _ [k [1 44)

Since Lo + Lo are the generators of dilatation and rotation, we ideriy=+ @?)/2 as the
scaling dimension and the conformal spin of the state). Finally, by defining the dual
field 6 to ¢ as

Z 45
2\/_(g0(z) 9(2)) (45)

6 has a periodicity 2/v/2.

A.6. Twisted boundary conditions and background charge

To any conformal operatof («o, &p), We can associate a twisted operator
foo (@0, @0) = exp(—i(Og + 07)) f (o, @o) eXPi(Og + 67))

= f(ao+ O, a0+ O). (46)
Here we set
0O=0= 53. (47)
2 2n
On the one hand, from equations (40) this means
o —¢— |72—I09|z| 9—>6—|\/_;;<1Iog§) (48)

that is, there is a cut fof.
Mapping from the plane to the cylinder by = u + iv = (L/27) logz, we obtain

K2, gl 49)
o — ¢ — ﬁLu — +ﬁLv
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that is, twisted boundary conditions férin the v direction.
On the other hand, the change (46), (47) with equations (42), (43) means the change of
the magnetic charges

m—m+ — n— n. (50)

2

This can be interpreted to set a magnetic monopbj@r at the originz = 0, and a
magnetic monopole-®/2x at the infinityz = oc.

A.7. Discrete symmetries

For the Gaussian model (23), besides continuéb) x U (1) symmetries, there are discrete
symmetries

T:(p,9) = (—¢.—9) C:(z.9) = 2z, 9. (51)

Appendix B. Calculation of the renormalized scaling dimensions

In this appendix, we calculate the correction of scaling dimensions in table 1, up to the first
order of yo, y, in some degenerate cases. The derivation here is simpler than the original
one [18, 9]. Let us consider the following 1D quantum Hamiltonian

A L
H=Hy+ -~ / dvO; (52)
27'[ 0

where Hy is a fixed point Hamiltonian[ is the system size (in tablelis related withL
as/ = log(L/a)), and O1(= (’)}) is a scaling operator whose scaling dimension;is\We
set the short-range cut-off as 1. According to Cardy [19], the size dependence of excitation
energies up to the first-order perturbation is given by
2 2
AEn(L) = T(xn + Clll}’l)“l(L) + - ) = Txn(L) (53)

wherex, is the scaling dimension of the operat@y, C,1, is the OPE coefficient of operators
0, and0, as

01(z,2)0,(0,0) = Cp1,z 77 0,(0,0) + - --

in which hy(= h1) is the conformal weight 0®; (x; = 2h1). We used the notation

o x1—2
Ar(L) =2 (T)

which comes from the renormalization group equation.
For the sine-Gordon model, we denote

K = 4 1+1
_m2 2y0

nearK =1 (m = 2) or K =4 (m = 1). We can rewrite the Lagrangian density as
L(z,2) = Loz, 2) + L1(2,2) (54)

where

2
Lo(z.3) = ’8”—JT<V¢>2
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and
L1273 = 2 M+ 22 /2cosv2me (55)
4 227
and we set
Yo Yo
o= = rg = —=. 56
0 2 ¢ ﬁ ( )

B.1. x”° and x”3

We calculatex”® and x?! up to the first order of’s. We denote operatorg2 cosme /~/2
(whose scaling dimension is”°) and /2 sinm¢/~/2 (whose scaling dimension i&3) as
O, and O, respectively. We have the following OPE’s

11

M(z,2)0.5(0,0) = EW

(Qm + .- (57)

1 1
V2cosv2me(z,2)0.,(0,0) = £——
P& A0 NAEE
where+ is for O, and— is for O,. From these OPEs and equation (53), we can obtain the
scaling dimensions,

O.50,0)+--- (58)

oy L Iyo@) 1 y(L)
xp(L)_2+2 2 +\/§«/§ (59)
for v/2cosne/~/2, and
s, _ 1 1yl 1 y(L)
=545 V2 2 (60)

for v/2sinme//2. Settingy, = yo(1+ 1), we have the scaling dimension described in
table 1. These are consistent with the results obtained by Giamarchi and Schulz [18].
Similar calculation can be applied td'>"6m7.m8,

B.2. Marginal operators

For the BKT transition, there exists a hybridization between the marginal fi¢ldnd the
operatory/2 cosy/2me¢ (m = 2 for K = 1, andm = 1 for K = 4) [9]. These two operators
have the same scaling dimension and symmetrid§ at 1 or K = 4. TreatingL; as the
perturbation term, we have the following OPE’s

2
L(z,2)M(0,0) = ;¢ﬂﬁcosﬁm¢(o, O+
|z s (61)
L£1(z.2)v/2 cosv/2m (0, 0) = 22— /2 cosv/2mp (0, 0) + 222 M(0,0) + - - -
27 |z|? 2m|z|2
Settingys = yo(1+4¢), and diagonalizing these equations, we have the orthogonal operators,
\/g(l —iIOM+ \/g(l + 20)v/2 cosv2m¢ (62)

with the scaling dimension (up to the first orderygfandr)
"Ly = 2= yo(L)(1 + 31)
and

J2a-invzcosvame + [ia+ 2nm (63)
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with the scaling dimension
X" =2+ 2yo(L)(1+ 30).
These scaling dimensions are consistent with the results obtained by one of the authors [9].

Appendix C. Symmetry in twisted boundary conditions

In equation (17), we showed the unitary transformation of TBC for spin operators. In this
appendix we discuss the unitary transformation of other operdiar®, T. They are not
well defined except for the specidl, in contrast to the spin operators.

C.1. Translation operator

The unitary operatolUs of the twisted boundary condition (17) is transformed with the
translation as

id &
TrUo[Tr] ™ = exp(f DU~ %>Sf+1>
j=1

id
=Uy exp(—%Sé) exp(ids;) (64)
therefore, we obtain
UsTr[Us] ™t = exp(—i®S5) T} (65)

where we introduce the operatd, = exp(i®S;./L)Tz. The operator exp-i®S7) is not
well defined except fod = 27/ (I : intege)

Ui Tr[Uzi] ™t = (=1)>' T, (66)

In the notationTy, the periodicity of the energy and the momentum eigenvalue under
® — O+ 27(S : integeph or & — & +4x(S : half-odd integer) [44, 45] becomes apparent,
in contrast to [46, 47]. Note that when we define the wavenumber g + ®S5./L as

ThY (g, S5, @) = expli(g + ®S3/L) ¥ (g, S5, @) (67)

Lq'/27 is not integer in general, although it corresponds to the eigenvalue n®/2r of
the conformal spin operatdty — Lo under TBC (see equations (39), (42), (43), (50)), and
T} has a more natural symmetry structure tffgn as will be seen later.

C.2. Discrete symmetrieB, T

The unitary operatot/s, is transformed with the parity as

; L
PUsP = exp<% Zl(j - %)Si+1_j>
=U_¢ exp(fd)S%) (68)
therefore, we obtain
U P[Ug] ™t = Use P Xp(—iDS3). (69)
The operator ex®S3.) is not well defined except fob = 7I(I:integer)
Un PlUx] ™" = (=% Uzui P (70)
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where we use thas;. is integer. In this case, we obtain

(U P)? = 1. (71)
Similarly, we obtain
UsT[Us] ™t = UzoT (72)
and
(UeT)? =1 (73)
For the twist angle® = =/, Hamiltonian (18) commutes with the operators

Uy P, Usy T. Moreover, these operators forn¥ group, that is, the eigenvalue of
Uy, P, U, T is 1.

Next for the twist angled = nl, we discuss the relation between the operdfgy; P
and the translation operat@,. Using (64), we obtain

. ; 2mil 1
TRUQHIPTRZGXD TST TRUZJII[TR] TrPTg

= exp(2iSil)Uzy P. (74)
Since the operator expriS;) is £1 for S integer or half-integer, this means
Ti(Uza P) = (=1)% Uz P)(T) ™ (75)

that is, in the momentum space for the even-integdl, the spectrum is symmetric with
respect tgy = 0, 7, whereas for the odd-integef2 the spectrum is symmetric with respect
tog = £+ /2. For the half-odd intege§ case, under TBC% = r) the ground statey(= 0)

is exactly degenerate with a staje= = [46], which is related to the Gaussian transition
[26].

C.3. Valence bond solid states

As an application of the previous sections, we discuss the generalizedZ, symmetries
or valence bond solid (VBS) [27] under the twisted boundary condition. It was shown that
under the twisted boundary conditions the quantum numBerB are the good quantum
numbers characterizing the generalizédx Z, symmetries [26]. Here we generalize these
results for the twisted boundary conditions with the translational invariant case.

The spin variable can be represented by the Schwinger bosons as follows

S§i = 3(afa; — bl by) St =ajb S; = abf (76)

with the constraint that the boson occupation number at eacla;‘sdt)eJr b;’bj is 25.
The VBS states with the TBC can be written as
IS, M, TBC(® = 1)) = (af bfe ™%t — blafe™/?L)S—M
L/2—-1
—i/2L im/2L\S+M
< [ (a3;_1b3,€™* = bj;_ya3,€7/)5*
j=1

+ 1,+ —im/2L + + in/2L\S—M
x(az;bg; €% — byaz; @)
X (az_lbze—lﬂ/zL _ bz_laz-elﬂ/zL)S+M |O> (77)

where M is an integer for the intege$, or a half-odd integer for the half-odd integ&r
(here we include bond-alternating cases). First we make a parity transformation for the
VBS state

P|S,M,TBC(® =n)) = (=1)5L|S, M, TBC(® = —n)) (78)
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where we useP|0) = |0). Then twisting withU,,,, we obtain
Uz P|S, M, TBC(® = 1)) = (=D)L M|§ M, TBC(® = 7)) (79)

where we useUy,|0) = |0), and Up,a; b Ut = af by exp2wi(L — 1)/2L). The same
discussion applies fat/,, T. Therefore, each M-VBS states is characterized by the discrete
guantum numbers/,, P = Uo, T = (—1)SL=5tM |

Similarly we can classify the intermediate large phase with the discrete quantum
numberlU,, P, U,, T under TBC.
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